Study Guide and Intervention

Graphing Linear Equations Using Intercepts

Finding Intercepts	
The <i>x</i> -intercept is the <i>x</i> -coordinate of a point where a graph crosses the <i>x</i> -axis. The y-coordinate of this point is 0.	To find the <i>x</i> -intercept, let $y = 0$ in the equation and solve for <i>x</i> .
The <i>y</i> -intercept is the <i>y</i> -coordinate of a point where a graph crosses the <i>y</i> -axis. The <i>x</i> -coordinate of this point is 0.	To find the <i>y</i> -intercept, let $x = 0$ in the equation and solve for <i>y</i> .

Example 1 Find the x-intercept and the y-intercept for the graph of 2x + 5y = 10.

To find the *x*-intercept, let y = 0.

$$2x + 5y = 10$$

Write the equation.

$$2x + 5(0) = 10$$

Replace y with 0.

$$x = 5$$

Simplify.

To find the *y*-intercept, let x = 0.

$$2x + 5y = 10$$

Write the equation.

$$2(0) + 5y = 10$$

Replace x with 0.

$$y = 2$$

Simplify.

Example 2

Graph 2x + 5y = 10.

Exercises

Find the x-intercept and the y-intercept for the graph of each equation.

1.
$$y = x - 5$$

2.
$$y - 1 = 0$$

3.
$$3x - 2y = 12$$

Graph each equation using the x- and y-intercepts.

4.
$$y = -3x - 3$$

5.
$$y = x + 5$$

6.
$$y = -x + 9$$

8-3

Skills Practice

Graphing Linear Equations Using Intercepts

State the x-intercept and the y-intercept of each line.

1.

2.

3.

Find the x-intercept and the y-intercept for the graph of each equation.

4.
$$y = 2x + 6$$

5.
$$3x - 5y = 30$$

6.
$$y = -4x + 8$$

7.
$$y = 7x - 14$$

8.
$$y = 12x + 6$$

9.
$$y = 7$$

Graph each equation using the x- and y-intercepts.

10.
$$y = -2x + 6$$

11.
$$y = -2$$

12.
$$y = -4x + 2$$

13.
$$y = \frac{2}{5}x - 2$$

14.
$$x = 4$$

15.
$$y = -x + 3$$

Practice

Graphing Linear Equations Using Intercepts

Find the x-intercept and the y-intercept for the graph of each equation.

1.
$$y = 2x - 2$$

2.
$$y + 4 = 0$$

3.
$$y = 3x + 9$$

4.
$$6x + 12y = 24$$
 5. $5x - 3y = 15$ **6.** $-x - 7 = 0$

5.
$$5x - 3y = 15$$

6.
$$-x - 7 = 0$$

Graph each equation using the x- and y-intercepts.

7.
$$y = x - 7$$

8.
$$y = -x + 5$$

9.
$$y = 2x - 4$$

10.
$$y = -\frac{1}{7}x - 1$$

11.
$$5x + 2y = 10$$

12.
$$x = 2$$

13. SAVINGS Rashid's grandparents started a savings account for him, contributing \$1000. He deposits \$430 each month into the account. The equation y = 430x +1000 represents how much money is in the savings account after *x* number of months. Graph the equation and explain what the y-intercept means.

